L2MU: Status Report

Christos Leonidopoulos, for the L2MU group

Columbia University

- History
- Performance
- Stability
- Tools Monitoring
- Simulator
- Future

DØ Workshop – L1/L2 Parallel Session Beaune, France - June 18, 2003

What is L2MU? (not what you may think...)

A little history

- May'02: Started filtering!
 - The first L2 module to go on-line!
- <u>Jun'02</u>: "Teething" problems
 - Stability issues: driver, monitoring, algorithms
 - Learning to deal with problematic FE muon inputs
- Sep'02: New LUT (and the next crisis)
 - Fwd SLIC algorithm problems tracked down & fixed
 - Additional monitoring, error-log tools developed
- Feb-Mar'03: New LUT, algorithms tuned-up
 - Another Fwd SLIC algorithm crisis solved

Today:
L2MU is more
efficient & robust
than ever!

Performance: Efficiency

Significant efficiency (*) improvement with latest code revision

(code went on-line on March 10, 2003 Run # 174094)

(*) Medium (or better) Muon Candidates matched to tracks

Performance: Rejection

Trigger	L2 Rejection
Single muons	
MU_A_L2M3_TRK10	3.88 ± 0.03
MUW_A_L2M3_TRK10	1.64 ± 0.01
Dimuons	
2MU_A_2L2	8.6±0.1
2MU_A_L2ETAPHI	4.6±0.4
2MUW_A_2L2_L3L7	3.47±0.06

Sample numbers from Run #177887 (June 9, 2003)

Notes:

- L2 rejection is higher for scint-based L1 triggers
- With the addition of wire hits at L1, fake L1MU rates are decreased (and so is L2 rejection)
- L1 & L2 now sharing the same inputs (L2: better granularity)

Code stability

- Driver, Memory Mgmt, monitoring:
 - Last issues/problems resolved/fixed last July ✓
 - No major code reorganization since
- Central SLIC algorithms:
 - Never had any problems ✓
- Forward SLIC algorithms:
- was killed (?) in Feb (*)

- Cen & Fwd Alpha algorithms:
 - Never had any problems ✓

(*) Developed software that captures input data (leading to crashes/hiccups) for off-line study;

Main Entry: **poly·mor·phism**Pronunciation: "pä-IE-'mor-"fi-z&m
Function: *noun*Date: 1839

: the quality or state of being able to assume different forms: as a: existence of a species in several forms independent of the variations of sex b: the property of crystallizing in two or more forms with distinct

We know how to deal with similar problems in the future

UnBiased Sample Mode (*)

(Another side effect of debugging SLIC crashes)

Robustness of UBS functionality (SLIC firmware) thoroughly tested; SLIC survives ruthless running conditions:

- Running in UBS mode 100% of the time
- HV thresholds lowered: ~ 100 hits/event
 (compare to ~ few hits/event in physics runs)
- Went up to 1.2 kHz before front-end busy's became an issue

(*)

- UBS mode: this is when the input raw data is appended to the output (along with the triggers found)
- Mark & Pass: all events are recorded
- − Typical event size: ~ x10 larger than normal

On-line Monitoring (1)

Thanks Reinhard

Impact of monitoring on dead time recently studied: may need to introduce new monitoring levels w/ less information

On-line Monitoring (2)

Trigger information $(\eta, \varphi, p_T \text{ distributions})$ analyzed on the fly & compared to reference plots (Global Monitoring)

Thanks Joe

Off-line Monitoring

Recently developed software:

- Downloads runs from SAM
- Collects muon-trigger-unbiased events containing off-line muons
- L2MU distributions & trigger performance monitoring w/o requiring special runs

Efficiency vs. off-line p_T

(*) Medium (or better) Muon Candidates matched to tracks

Simulator vs. on-line comparison

Developed software that allows studies on SLIC & alpha code verification separately

- SLIC algorithm verification:
- Difference in muon stub finding: $|N_{\text{online}}-N_{\text{offline}}| \sim 1-2\%$
- Includes effect due to SLIC input discrepancies
 (inputs in simulator taken & unpacked from L3)
- Further studies pending
- Alpha algorithm verification:
- Difference in muon trigger finding: $|N_{\text{online}}-N_{\text{offline}}| < 0.1\%$
- Source: rounding up of floats (LUT indices)
- Problem can be solved by using integers instead

Other "L2MU" issues

Front-end muon inputs occasionally give problems (stop sending data, or too many out-of-sync errors)

- Need to be disabled <u>fast</u> (*Alan Stone is watching you*)
- Recently developed GUI:
 Muon expert can disable L2MU inputs ✓
- No need to page L2 expert any more ;-)

Thanks Dennis, Reinhard

More complaints about L2MU...

Subject: L2 trigger improvement after run ~172k

Date: Mon, 05 May 2003 17:09:32 -0500

From: xxxxxx <xxxxx@fnal.gov>

To: christos@fnal.gov

Hello Christos:

I am trying to calculate Z cross-section for Z->mumu and get its time dependence.

My problem is that L2 trigger has improved after run ~172k or so.

Future Plans

Can we increase the L2MU rejection power? Difficult if relying just on muon hits...

- Match tracks to muons
 - Will need to be implemented at L2GLB (receives inputs from STT & L2MU)
- Can L2MU do a better job in measuring p_T ?
 - − Needs ~2 weeks of studies (& "proof of principle")
 - Need to work w/ muon group to prove that local p_T measurement is better than L2's